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Abstract

This study aims to determine the cost of letting an agent adjust the service rate to the last real-

ized event, being a customer arrival or a service completion. We study this question in a single-

server queue under a principal-agent framework. The principal seeks to reduce the expected

waiting time by incentivizing the agent to modify the service rate through a performance-based

payout. We show that a large range of improvement is achievable by selecting event-dependent

service rates. However, the agent’s payout can grow high in the realized improvement, suggest-

ing to limit the use of incentives for event-dependent service rates to a bounded waiting time

improvement. When the service rate after an arrival is contractible, the agent should be paid

more in contexts with a low variability inter-arrival time. The opposite conclusion holds when

the average service rate is contractible. Further, we provide a criterion to determine when it

is optimal for the agent to accelerate after an arrival or after a service completion. Finally, we

investigate the effect of event-dependency on customers’ fairness and abandonment.

Keywords: Queueing; event-dependency; G/M/1; service rate; principal-agent.

1 Introduction

In some manufacturing and service systems, agents are able to decide on their service rate. In queue-

modeled systems, for instance, an agent can optimize its service rate to obtain the best trade-off

between the idling duration and effort-cost. Depending on the system under consideration, the

optimized service rate is either constant, or it can be changed over time depending on the queue

length (George and Harrison, 2001) or the objective service level (Zafer and Modiano, 2005). In

studies related to service rate optimization, the rational and strategic agent is assumed to have a

full understanding of the system state and is subsequently able to adjust the service rate to a certain

optimization objective.

In practice, a human agent may be subject to some bias in perceiving the situation of the system.

One of these biases is to give particular importance to the most recent changes in the system, more

than to the system state itself. This bias is regularly experienced by newspaper readers, for whom



the latest news tends to preempt older news in their understanding of a situation. In Finance,

decisions are also often made with a myopic bias (Fellner and Sutter, 2009). In a queueing context,

the last realized event may influence the agent in selecting the service speed. When an arrival

occurs, the agent might be tempted to accelerate to quickly get back to the pre-arrival situation, for

instance. A service completion could also be an incentive to speed up as it indicates that the idling

period could then come sooner than expected. Delasay et al. (2019) reviewed how changeover,

instantaneous load, and extended load may impact service times. The effect of the last realized

event can be viewed as a reaction to a modification of the load (extension or reduction) on the

service rate.

Capturing the effect of the last realized event from data analysis can be confusing as the last

event may not necessarily be the cause of the agent’s behavior. For instance, the service duration of

customers who did not obtain service completion (from another agent) during their service could be

evaluated. Having no service completion over a long period may indicate that only a small number

of agents is busy. This means that busy agents are aware that they are likely to become available

at service completion and could thus accelerate their service speed. In this case, what drives the

decision is not that there is no service completion during the service time but that some other agents

could be available. On the other hand, a high frequency of service completion could indicate that

the queue is congested. Therefore, there exists a correlation between the last realized event and the

system state. This means that the proven rationality when taking decisions based on queue length

may also exist when taking decisions based on the last realized event. The aim of this paper is to

analyze the costs and benefits of taking decisions for the service speed driven by the last realized

event, being an arrival or a service completion.

To this end, we investigate a principal-agent problem where the agent is hired to serve customers

arriving over time from a process with a generally distributed inter-arrival time. The service times

are exponentially distributed and the agent can select two different service rates depending on

the last realized event. A fixed payment of the agent is due to a base-effort exerted to serve all

customers at a given base service rate. However, the principal expects the agent to speed up service

as compared to this base-effort with the aim of reducing customers’ expected waiting time. To

achieve this goal, the principal uses incentives to reward the improvement in expected waiting time.

The agent reacts by selecting event-dependent service rates, that are different than those of the
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base-effort, to accelerate some services. Two contracts are studied. In this first one, the service rate

after an arrival is contractible. Thus, the incentive only has an effect on the service rate after a

service completion which could be increased by the agent to lower the waiting time. In the second

contract, the average service rate is contractible and the agent has full discretion to select the two

service rates. For the two contracts, the agent selects the service rates to maximize the utility

function defined as the difference between the revenue and effort-cost.

To solve the principal-agent problem, we first determine the stationary probabilities and the

performance measures of the G/M/1 queue with event-dependent service rates. To this end, we

employ a continuous time Markov chain analysis similar to the one in Kerner (2008) for an M/G/1

queue, where a state of the system is defined by the number of customers present, the nature of

the last realized event, and the remaining time before the next arrival. Next, for the first contract,

we prove that the agent’s utility is concave in the obedient effort, being the average service rate

or the service rate after a service completion. This result indicates that the agent’s utility has

a unique maximum which is solution of the optimization problem. Further, we show how the

payout parameters should be set to minimize the agent’s payout while achieving a certain level of

improvement on the expected waiting time. Although the range of achievable improvement is large

with the first contract, our results show that the agent’s payout is convex in the expected waiting

time improvement. This suggests that improving the service level through incentives should be

limited to relatively moderate expectations in the waiting time lowering. Finally, we show that the

agent’s payout reduces with the variability of the inter-arrival time, indicating that selecting event-

dependent service rates may be a good strategy to reduce the negative consequences of inter-arrival

time variability on the expected waiting time.

For the second contract, where the average service rate is contractible, we provide a condition

on the inter-arrival time distribution under which it is optimal for the agent to accelerate after an

arrival or service completion. This condition is complex and involves the Laplace Transform of the

inter-arrival time distribution. However, in many cases, when the variability of the inter-arrival

time distribution increases, it is optimal for the agent to accelerate after an arrival. Moreover, we

also prove that having an infinite service rate after an arrival or service completion, in addition

to not being feasible in practice, is also never optimal. Using these results, we express the agent’s

payout parameters. With the second contract, the range of achievable improvement is less than
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with the first contract as the expected waiting time is mainly driven by the average service rate.

The behavior of the agent’s payout in the waiting time improvement differs from the one in the first

contract. When the variability of the inter-arrival time is high, the payout can be concave when

the improvement is low. This argues for not employing event-dependent service rates in this case.

On the contrary with low variability distributions, the agent’s payout is almost insensitive to the

waiting time improvement which renders event-dependent service rates advisable in such cases.

Finally, we investigate other benefits of event-dependent service rates in the case of an exponen-

tial inter-arrival time distribution. We show that accelerating after a service completion can reduce

the sensitivity of the expected waiting time at arrival to queue length. This can be interesting

when the principal aims to provide a fair service quality to its customers in the sense that arriving

customers have almost the same offered waiting time at arrival. We also include the feature of

abandonment in the analysis. We show that accelerating after an arrival can help to reduce the

fraction of lost customers.

Section 2 presents a literature review. Section 3 formulates the principal-agent optimization

problem for service rate event-dependency. Section 4 derives the stationary probabilities and the

performance measures of the G/M/1 queue with event-dependent service rates. Section 5 provides

the solution of the optimization problem when the service rate after an arrival is contractible while

Section 6 explores the solution to this problem when the average service rate is contractible. Section

7 reveals other benefits of event-dependency on the waiting time at arrival and fraction of lost

customers in the exponential case. Finally, Section 8 concludes the paper and provides directions

for future research. The mathematical proofs of the main results are given in the appendix.

2 Literature review

First, since our study considers a principal-agent problem, we present prior studies in the related

field of contract theory. Second, in relation with service rate optimization, we provide the existing

literature on agents acting strategically. Finally, as our analysis examines a particular G/M/1 queue,

we detail the literature on methodological contributions on this topic.

The book by Laffont and Martimort (2009) provides a theoretical framework to analyze the

principal-agent problem considered in this study. There is a long history of compensation analyses

in the fields of marketing, economics, heath care, and operations management (for instance, see Lal
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and Srinivasan (1993); Herweg et al. (2010); Jain (2012); Chen et al. (2016); Suen et al. (2018); Li

et al. (2020)). This literature stream mainly focuses on linear commission and quota-bonus contracts

(that is, the employee receives a bonus for meeting a performance quota). In this paper, we focus

on a performance-based payout used as a tool to induce a lowering of the offered wait. We assume

that either one of the two service rates is contractible or the average service rate is contractible.

Suen et al. (2018) describes how payouts can be employed to induce socially-optimal behavior in a

context where decisions are non-contractible, as in our study. Jain (2012) investigated a situation

where employees exert self-control, as in this paper, showing that firms can reduce the negative

consequences of self-control by delaying payment to employees. Jiang et al. (2012) investigated

a performance-based approach to contracting for medical services. They showed that including

the waiting time in the contract definition through a penalty paid in case of excessive wait allows

reaching the first-best performance. The contract considered in this study is also a performance

based contract. However, instead of a penalty for excessive wait, we consider a reward for wait

reduction effort. In a producer-seller relationship, Chen et al. (2016) compared forecast-based and

linear compensation contracts. They showed that with an endogenous information-acquisition effort,

forecast-based contracts can outperform linear compensation ones. Li et al. (2020) also compared

linear and non-linear contracts and showed that the feature of fairness plays a role in the potential

outcomes realized, leading to a reduction in the benefits of non-linear contracts. Meanwhile, Long

and Nasiry (2020) discussed contexts where making wages transparent to employees were beneficial

to the firms. The incentive-design issue becomes more complicated with multitasking agents. Dai

et al. (2021) considered a principal-agent framework where the agent can exercise two types of

tasks, operational and marketing. They characterized the optimal compensation plan, where a

bonus is paid when either all the inventory above a threshold is sold or the sales quantity meets an

inventory-dependent target.

This paper analyzes the problem of an agent acting strategically to select its service speed,

tying our study to queueing games (Hassin and Haviv, 2003). It should be noted that service rate

optimization in the literature can also be made by the system manager (Ata and Shneorson, 2006).

Kalai et al. (1992) investigated a queue with two exponential servers in competition. They proved

that when the expected waiting time is finite, there exists a unique symmetric strategic equilibrium.

Christ and Avi-Itzhak (2002) extended the model description to a situation with a state-dependent
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Poisson arrival process, showing that when the cost function is convex and increasing, there also

exists a unique symmetric Nash equilibrium strategy. Avi-Itzhak et al. (2006) explored globally

optimal solutions for this model. They showed that optimal solutions are symmetric and that the

unique Nash equilibrium is in general strictly inferior to a globally optimal solution. Cachon and

Zhang (2007) studied a two-server model where the service rate selection is driven by incentives as in

this study. They showed that the trade-off between efficiency and incentives may not exist. In par-

ticular, it seems possible to design an allocation policy that is efficient and leads the faster-working

servers. Geng et al. (2015) focused on the impact of exogenous routing decisions on endogenous

service speed in a queue with two servers seeking fairness. The existence and uniqueness of the Nash

equilibrium was proven for some routing policies. Zhan and Ward (2018) analyzed a single-server

exponential queue with abandonment. They proved that there exists a unique maximum of the

agent’s utility computed as the product of the value of the service speed multiplied by the agent’s

utilization rate. In the multi-server case, Gopalakrishnan et al. (2016) considered a situation where

each agent can decide on their service rate, given that the agent’s objective is to maximize utility

defined as the difference between the fraction of idling time and the effort-cost. The authors also

discussed the effect of routing rules on the optimal service rate. Chan et al. (2014) studied how to

optimally speed up the agents’ service rate to reduce congestion in a system where customers with a

too short service time may return. Zhan and Ward (2019) further investigated the multi-server case

to find a joint staffing, routing, and payment policy that would lead to an optimal performance.

By solving the centralized control problem under fluid scaling, they found that critically loaded,

efficiency driven, quality driven, and intentional idling regimes were economically optimal. Finally,

in a principal-agent framework close to ours, Baiman et al. (2010) investigated how a single server

could maximize its utility in a finite capacity queue by selecting a service rate. The principal in

their context could decide for the payouts and for the system’s capacity.

This paper derives the stationary probabilities in a particular G/M/1 queue. The G/M/1 queue

is one of the classical models of queueing theory (for instance, see Kleinrock (1975), Chapter 6). The

usual approach to derive the performance measures for this queue is to analyze the related discrete

time Markov chain at arrival instants. This method has been successful in providing the performance

measures for some variants of the G/M/1 queue. Laslett (1975) used this approach to analyze the

G/M/1 with finite capacity, while Hokstad (1975) extended the results to the multi-server setting.
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In addition, Zhang and Tian (2004) considered a queueing system in which the server follows a

threshold-type policy. In such a system, the server stops serving the queue whenever the system

becomes empty and resumes service when the number of waiting customers in the system reaches

a certain threshold. Alternative approaches like martingale techniques, transform techniques, and

sample-path arguments are developed in Adan et al. (2005) to analyze the G/M/1 queue. Pourbabai

(1990) developed a heuristic algorithmic approach to approximate the tandem behavior of the finite

G/M/1 queue, while Ke and Wang (2002) used the supplementary variable technique where the

remaining inter-arrival time becomes the supplementary variable to analyze the G/M/1 queue with

a removable server. We use this approach in our paper to compute the stationary probabilities. Chae

et al. (2006) derived the probability-generating function of the queue length when the server takes

one exponential vacation each time the system empties. Legros (2021) developed a model where the

idling duration and the age of the oldest customer is used to provide a Markovian representation

of the G/M/1 queue with the aim of solving policy optimization problems. Bae and Kim (2010)

employed level crossing arguments to analyze the G/M/1 queue with constant patience. Also using

a sample path analysis and level crossing arguments, Löpker and Perry (2010) investigated the idle

periods of the G/M/1 queue with a removable server. Haviv and Kerner (2011) showed that for

the G/M/1 queue, conditioning on a busy server, the age of the inter-arrival time and the number

of customers in the queue are independent and that the same result holds when the age is replaced

by the residual inter-arrival time. Oz et al. (2017) introduced a rate balance principle for general

stochastic processes and used this result to derive new results for G/Mn/1 queueing systems.

3 Formulation of the problem

In this section, we present the principal-agent framework of this study. The firm consists of a risk-

neutral principal and agent who agree to a contract which will govern their employment relation.

The agent is hired to serve customers in the order of their arrival in the system. Customers’ inter-

arrival time is exogenous and generally distributed with probability density function f(t), for t ≥ 0.

Further, we assume that the service time is distributed according to an exponential distribution.

We assume that the agent does not know the total number of customers waiting to be served and

cannot anticipate future arrivals. However, a signal is sent by the system to the agent when a

new customer enters the system. Therefore, the agent knows customers’ arrival instants. Since the
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agent is the only one to serve customers, service completion instants are also known by the agent.

Consequently, even if this information is not communicated, the agent could determine the number

of customers in the system from the arrival and service completion instants. However, we assume

that the agent does not make this effort and only relies on the last realized event being either an

arrival or a service completion to select a service rate. Therefore, the agent may select two different

service rates, µ1 and µ2, such that the rate µ1 is used after an arrival instant and µ2 is used after a

service completion. It should be noted that the service rate can then change during a service if an

arrival occurs. This queueing model is a novel variant of the G/M/1 queue, termed the G/M event/1

queue, where the service rate is event-dependent. We denote by µ the average service rate of a

given customer and by E(A) the expected inter-arrival time. As for the G/M/1 queue, the stability

condition is given by µE(A) > 1.

The compensation model is based on a fixed-wage FW and a piece-rate compensation pr based

on the long-run performance offered to customers. The fixed-wage compensates the base-effort of

working with an average service rate µ while the piece-rate compensation rewards the extra-effort

which results in reducing the expected waiting time, E(W ), by selecting different service rates, µ1

and µ2. The principal rewards the improvement in the expected waiting time when the agent selects

different service rates than those of a base situation where the agent would operate with identical

service rates, µ1 = µ2 = µe. Specifically, the agent receives a reward pr per customer and per unit of

expected waiting time gained as compared to the expected waiting time in the base situation. In the

long-run, the expected revenue for the agent, termed C, is then C = FW + pr
E(A)(E(We)−E(W )),

where E(We) is the expected waiting time in the base situation (that is, when µ1 = µ2 = µe).

The agent’s effort is the sum of a base-effort, bµ, of working with an average service rate µ and

an extra-effort, e (max(µ1, µ2)− µ), of selecting different service rates, with b, e ≥ 0. Further,

we assume that the extra-effort is more costly to the agent than the base-effort: e ≥ b. The

agent’s utility, U , can then be defined as the difference between the expected revenue and effort-

cost: U = FW + pr
E(A)(E(We) − E(W )) − emax(µ1, µ2) + (e − b)µ. The agent selects µ1 and µ2

such that the long-run expected utility is maximized. The principal has discretion for selecting

the compensation parameters pr and FW . However, the fixed-wage FW should compensate the

base-effort. Therefore FW is set such that FW ≥ bµ, for b ≥ 0.

It should be noted that the most standard contract definition for principal-agent problems is to
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reward the service of each customer as in Baiman et al. (2010). In their case, the agent is incentivized

to speed-up service as a way to serve more customers since they consider a finite capacity queue.

In our study, the queue capacity is infinite, so the selection of the service rate does not impact the

long-run rate of served customers. That is why the service level, measured by the waiting time, is

included in the contract definition as a way to incentivize the agent to speed up. This choice can be

found in different contexts. We mention Ren and Zhou (2008) who considered a contract between

a user company and a call center. They proved that quantity based contracts are not optimal while

contracts involving the service level could be. In the health care sector, the wait is also included in

the contract structure. For instance, Jiang et al. (2012) investigated a performance-based approach

to contracting for medical services. They showed that including the waiting time in the contract

definition through a penalty paid in case of excessive wait allows reaching the first-best performance.

In this study, instead of a penalty for excessive wait, we consider a reward for wait reduction effort.

Finally, Guo et al. (2019) included the waiting time in their utility function which is also part of

the reward structure in their considered contracts.

The principal-agent optimization problem can be expressed as follows:

Minimize
pr,FW

FW +
pr

E(A)
(E(We)− E(W )), (1)

subject to
{
FW ≥ bµ
µ1, µ2 ∈ arg max{FW + pr

E(A)(E(We)− E(W ))− emax(µ1, µ2) + (e− b)µ},

We consider two contracts to analyze Problem 1. In the first one, termed Contract 1, we assume

that the rate µ1 is kept constant such that Problem 1 is solved by determining the value of µ2 which

maximizes the agent’s utility. Under this constraint, the agent’s actions are partially contractible.

Specifically, the rate µ1 is contractible while µ2 is not. The objective for the principal with this

contract is to minimize the agent’s payout such that a certain improvement in E(W ) is reached

by increasing µ2. It should be noted that the analysis with Contract 1 could be made in a similar

way by assuming that µ2 would be kept constant while µ1 would be optimized. With the second

contract, termed Contract 2, we assume that the average service rate µ is contractible but the two

service rates µ1 and µ2 can be optimized. This second contract focuses more specifically on the

effect of the differentiation between the service rates as the average service rate is kept constant.

As for Contract 1, the objective for the principal is to achieve a certain improvement on E(W ) at

9



minimal cost. To solve Problem 1, we first evaluate the performance measures of the G/M event/1

queue. This analysis is made in Section 4 using the supplementary variable approach as in Kerner

(2008). Next, in Sections 5 and 6, we solve Problem 1 for the two contracts described above. Finally,

in Section 7, we explore the impact of having different service rates on the expected waiting time

at arrival and proportion of abandonment. We end this section with a table of notations used

throughout the paper (Table 1).

Table 1: Table of notations
State of the system

x Number of customers in the system, x ∈ Z+

i Last realized event with i = 1 for an arrival and i = 2 for a service completion
r Remaining inter-arrival time, r ∈ R+

Parameters of the queueing model
f(t) Probability-density function of the inter-arrival time

F ∗(s) Laplace-Stieltjes transform of f(t): F ∗(s) =

∫ ∞
r=0

e−srf(r) dr

E(A) Expected inter-arrival time
µ1 Service rate after an arrival
µ1 Service rate after a service completion
µ Average service rate
µe Service rate in the base situation with µe = µ1 = µ2

Agent’s utility, payments and effort
pr Piece-rate compensation per customer and per unit of expected waiting time gained
FW Fixed-wage per agent
b Parameter of the base-effort (Base-effort= bµ)
e Parameter of the extra-effort (Extra-effort= e(max(µ1, µ2)− µ))
U Agent’s utility, U = FW + pr

E(A)(E(We)− E(W ))− emax(µ1, µ2) + (e− b)µ
C Agent’s revenue (that is, the principal’s cost), C = FW + pr

E(A)(E(We)− E(W ))

Performance measures
p(x, i, r) Probability density to be in state (x, i, r)
πx,i Stationary probability to be in state (x, i)
q Common ratio of the stationary probabilities πx,i

E(W ) Expected waiting time
E(We) Expected waiting time in the base situation with µe = µ1 = µ2
qe Common ratio of the stationary probabilities πx,i in the base situation

with µe = µ1 = µ2
H i
x Laplace transform of the first passage time from state (x, i) to a beginning of service

E(Wx) Expected waiting time at arrival when x customers are already present in the system
β Abandonment rate
PA Probability of abandonment

4 Performance analysis of the G/Mevent/1 queue

The traditional framework to analyze queues with generally distributed inter-arrival times and

exponential service times is to consider the embedded Markov chain at arrival instants (for instance,

see Kleinrock (1975), Chapter 6, page 241). The analysis of the related discrete time Markov chain
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may allow us to determine the stationary probabilities at arrival instants. For the G/M/1 queue,

it is possible to deduce some important performance metrics like the expected waiting time or

probability of having an empty system. In our case involving event-dependent service rates, however,

the service time distribution may change during a service. Therefore, the expected waiting time

cannot be deduced from the stationary probabilities at arrival instants. The same difficulty holds

when considering the probability of having an empty system as the system at arbitrary time cannot

be easily related to the system at arrival instants. To avoid this difficulty, we directly study the

continuous time Markov chain at arbitrary instants by including the remaining time before the next

arrival in the state description. This alternative approach was shown to be successful for specific

M/G/1 and G/M/1 queues where the analysis of the embedded Markov chain does not lead to the

wanted performance measures (Ke and Wang, 2002; Kerner, 2008; Legros and Sezer, 2018).

At a given instant t, a state of the system is defined by the vector (x(t), i(t), r(t)), where

x(t) is the number of customers in the system, with x(t) ∈ Z+, i(t) is the last realized event,

with i(t) ∈ {1, 2}, where i(t) = 1 (i(t) = 2) indicates that the last event is an arrival (a service

completion), and r(t) is the remaining time before the next arrival, with r(t) ∈ R+. At an arbitrary

instant, a single service completion occurs within δt time units with probability µ1δt + o(δt) or

µ2δt + o(δt), two or more service completions occur with probability o(δt) and the probability of

no service completion is either 1 − µ1δt + o(δt) or 1 − µ2δt + o(δt). The vector (x(t), i(t), r(t)) is

therefore a Markov process since it completely summarizes all past history relevant to the future

system development.

We denote by pt(x, i, r) the probability-density of having x customers in the system, x ≥ 0, the

last event being i, for i = 1, 2, and a remaining time before the next arrival being r, for r ≥ 0,

at time t (given some arbitrary initial distribution), and by p(x, i, r) the limit of pt(x, i, r) as t

tends to infinity; p(x, i, r) = lim
t−→∞

pt(x, i, r), for x ≥ 0, r ≥ 0, and i = 1, 2. In Lemma 1, we give

the differential equations defining the evolution of the system state when the stationary regime is

reached.
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Lemma 1. For r ≥ 0, x ≥ 0, and i = 1, 2, p(x, i, r) obeys the following differential equations

p(0, 2, r)′ = −µ2p(1, 2, r)− µ1p(1, 1, r), (2)

p(x, 2, r)′ = µ2p(x, 2, r)− µ2p(x+ 1, 2, r)− µ1p(x+ 1, 1, r), for x ≥ 1, (3)

p(1, 1, r)′ = µ1p(1, 1, r)− f(r)p(0, 2, 0), and (4)

p(x, 1, r)′ = µ1p(x, 1, r)− f(r)(p(x− 1, 1, 0) + p(x− 1, 2, 0)), for x ≥ 2, (5)

where p(x, i, r)′ = ∂p(x,i,r)
∂r .

In Theorem 1, we obtain the steady state probabilities πx,i from Lemma 1, where x represents

the number of customers in the system and i is the last realized event, where i = 1 (i = 2) indicates

that the last realized event is an arrival (a service completion). Note that if the last realized event

is an arrival, we cannot have an empty system (that is, we cannot have the combination i = 1 with

x = 0).

Theorem 1. Under the stability condition µ1F ∗(µ1)+µ2(1−F ∗(µ1))
µ1µ2

< E(A), the steady state probabil-

ities are given by

π0,2 = 1− µ1F
∗(µ1) + µ2(1− F ∗(µ1))

µ1µ2E(A)
, (6)

πx,2 =
F ∗(µ1)µ1(1− q)

µ2(µ1E(A)− 1) + (µ2 − µ1)F ∗(µ1)
qx−1π0,2, for x ≥ 1, (7)

πx,1 =
(1− F ∗(µ1))µ2(1− q)

µ2(µ1E(A)− 1) + (µ2 − µ1)F ∗(µ1)
qx−1π0,2, for x ≥ 1, (8)

where F ∗(s) the Laplace-Stieltjes Transform (LST) of the inter-arrival time; F ∗(s) =

∫ ∞
r=0

e−srf(r) dr,

and q is the unique solution in (0, 1) of

(µ1 − µ2)(1− q)F ∗(µ1) + qµ1F
∗(µ2(1− q))

µ1 − µ2(1− q)
= q. (9)

From the stationary probabilities, we deduce the performance measures of interest in Corollary 1.
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Corollary 1. The main performance measures are given by

µ =
µ1µ2

µ1F ∗(µ1) + µ2(1− F ∗(µ1))
, (10)

π0,2 = 1− 1

µE(A)
, and (11)

E(W ) =
q

µ(1− q)
. (12)

The exponential case. We illustrate the applicability of our analysis to the exponential case.

The probability density function of the exponential distribution with parameter λ is f(t) = λe−λt,

with t ≥ 0. We deduce that F ∗(s) = λ
λ+s , for s ≥ 0. Hence, after some algebra, we get q = λ(λ+µ2)

µ2(λ+µ1)

under the stability condition λ < √µ1µ2. We thus deduce that

πx,2 = π0,2
λ2

µ2(µ1 + λ)

(
λ(λ+ µ2)

µ2(λ+ µ1)

)x−1

, for x ≥ 1,

πx,1 =
µ2

λ
π0,2

λ2

µ2(µ1 + λ)

(
λ(λ+ µ2)

µ2(λ+ µ1)

)x−1

, for x ≥ 1, and,

π0,2 =
µ1µ2 − λ2

µ2(λ+ µ1)
.

We also have

µ =
µ2(λ+ µ1)

λ+ µ2
, and E(W ) =

λ

µ(µ− λ)
.

We note that the expression of E(W ) only depends on µ. Hence in the exponential case, having

two different service rates does not provide improvement beyond what can be obtained with the

average service rate µ.

5 Analysis with Contract 1

In this section, we analyze Problem 1 with Contract 1. Contract 1 is simpler to analyze than

Contract 2 since only one service rate has to be selected by the agent which makes the problem

one-dimensional. In Proposition 1, we prove that the agent’s utility is concave in µ2 when µ1 is

kept constant. This shows that for each value of the piece-rate pr, there exists a unique µ2 which

maximizes the agent’s utility. Having a unique maximum of the utility is interesting as it shows

that the agent will not select a service rate that is not globally optimal.
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We prove this result by showing that E(W ) is decreasing and convex in µ2. This result could be

expected from Weber (1983) who proved that the expected waiting time is decreasing and convex

in the service rate for single server queues. However, the queueing model in Weber (1983) assumes

that arrival times and service times are independent. This is not the case with event-dependent

service rates. Further, Tu and Kumin (1983) showed that the convexity property does not hold

without the independence of the two processes. Therefore, the convexity property of E(W ) has to

be proven for our model. Note that even if the result might seem expected, we could possibly have

found a counterexample. For instance, although expected from an M/M/1 queue, the expected

waiting time in the G/M/1 is not convex in the mean arrival rate. A counterexample can be found

in Fridgeirsdottir and Chiu (2005) with a Bernoulli interarrival time.

Further, we prove that µ2 ≥ µ1. This result is expected as it is the purpose of the incentive pr

to speed up the agent’s service. Finally, we also show that the optimal piece-rate pr, given by

pr =

(
e− (e− b) ∂µ∂µ2

)
E(A)

−∂E(W )
∂µ2

, (13)

is positive and increasing in µ2 and µ. The fixed-wage FW compensates the base-effort but does

not create an incentive to speed up service. Therefore, the principal should set FW = bµ in order

to minimize the agent’s fixed payout. The principal’s cost, C, of inducing service rate µ is then

given by

C = bµ+

(
e− (e− b) ∂µ∂µ2

)
(E(We)− E(W ))

−∂E(W )
∂µ2

.

Proposition 1 also proves that C is increasing in µ2 and µ. Having pr and C increasing in the

obedient effort µ is also expected as the principal should increase the agent’s payout if an higher

effort is expected.

Proposition 1. With Contract 1, the agent’s problem is concave in µ2 and the service rate µ2 is

selected by the agent such that µ2 ≥ µ1. Further, the optimal piece-rate pr and the agent’s payout

C are positive and increasing in µ2 and µ.

In Figure 1, we present the optimal piece-rate pr and the agent’s payout C as functions of the

relative improvement, RI, obtained in E(W ), computed as RI = E(We)−E(W )
E(We)

. We present the

14



cases of a deterministic, exponential and hyper-exponential distributions with the same expected

inter-arrival time E(A) = 1. The hyper-exponential distribution is defined with two rates, 2/3 and

2, and a probability of 50% to observe an inter-arrival time with one of the two rates. Using (9), we

show that lim
µ2→∞

q = F ∗(µ1) and lim
µ2→∞

µ = µ1
1−F ∗(µ1) . Therefore, we have lim

µ2→∞
E(W ) = F ∗(µ1)

µ1
. This

asymptotic result gives an upper bound for RI since E(W ) is decreasing in µ2. Starting from a

situation where µ2 = µ1 and where q = qe is given by qe = F ∗(µ1(1− qe)) as for a standard G/M/1

queue, the upper bound for RI is equal to 1− qe
µ1(1−qe) . For the distributions presented in Figure 1,

RI can go up to 80%.

As expected from Proposition 1, pr and C are increasing in the relative improvement on E(W ).

We also observe that these costs are convex in RI. As compared to the initial situation where

RI = 0%, the cost of increasing the obedient effort by incentives can grow extremely high if a high

improvement is expected. However, when RI is less than 30%, the agent’s payout C only increases

of at most 20%. Therefore, incentives should be employed only when the principal expects a limited

improvement as compared to the base case µ1 = µ2 = µe. We also observe that the variability of

the inter-arrival time distribution impacts the cost of increasing the obedient effort in the sense that

this cost increases when the variability of the inter-arrival time decreases. Owing to the convexity

of the expected waiting time in µ2, the effect of increasing µ2 is stronger when E(W ) is already

high. Given that E(W ) increases with the variability of the inter-arrival time, increasing µ2 has

more effect on E(W ) for the hyper-exponential distribution than for the deterministic one. That is,

−∂E(W )
∂µ2

increases with the variability of the inter-arrival time. Since −∂E(W )
∂µ2

is at the denominator

of the optimal piece-rate pr (see (13)), the piece-rate and the agent’s payout decrease with the

inter-arrival time variability.

With Contract 1, the service rate µ1 is contractible. For the principal, with the aim of achieving

a given service level on E(W ), the question is to determine how the value of µ1 should be set in the

contract. For the principal, the selection of µ1 is a way to decide for the proportion given to the

variable part of the agent’s payout in comparison with the fixed part. Our numerical investigations

indicate that it is advisable to have µ1 as close as possible to µ2, such that the average service rate

becomes almost fully contractible and the incentive part of the payout is reduced to zero. This

result was expected from contract theory. A system where the agent’s actions are fully contractible

is called a first-best setting. From Laffont and Martimort (2009), the first-best setting serves as a
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(b) Agent’s payout C

Figure 1: Numerical illustration (e = b = 1, µ1 = 1.1, E(A) = 1)

lower bound for the agent’s payout.

Although less costly, a fully contractible system is less satisfying on a human resource manage-

ment level. Due to the strong convexity of pr and C in RI, our analysis reveals that the agent’s

payout can be kept relatively close to the first-best cost for a large range of relative improvement.

The analysis of the first contract showed that having different service rates could be a way to

increase the average service rate while having the agent’s actions partially contractible. In the fol-

lowing section, we further investigate the benefits of having different service rates on the expected

waiting time by assuming that the average service rate µ is contractible and that the agent has full

discretion for selecting µ1 and µ2.

6 Analysis with Contract 2

With Contract 2, the average service rate µ is contractible and kept constant but the two service

rates µ1 and µ2 are optimized. Therefore, for a given value of µ, µ1 and µ2 are related via

µ2 =
µ1F

∗(µ1)µ

µ1 − µ(1− F ∗(µ1))
. (14)

Using this relation, we first prove in Lemma 2 that µ2 is decreasing in µ1.

Lemma 2. The service rate µ2 is decreasing in µ1 when µ is held constant.

Next, we question whether having two different service rates has the potential to reduce the

expected waiting time. In particular, we question whether the agent should accelerate after an

arrival (µ1 > µ2) or after a service completion (µ2 > µ1) while keeping the average service rate

16



fixed.

In Proposition 2, we specify how the expected waiting time behaves when either µ1 or µ2 tends

to infinity for any distribution of the inter-arrival time. The result of Proposition 2 also shows that

with Contract 2, µ2 = ∞ cannot be optimal since the G/M event/1 queue behaves as a standard

G/M/1 queue with equal service rates. Moreover, if the variability of the inter-arrival time is lower

than the one of an exponential distribution, µ1 = ∞ can also not be optimal as the G/M event/1

behaves as an M/M/1 queue in this asymptotic case. It should be noted that even when the

variability of the inter-arrival time is higher than the one of an exponential distribution, µ1 =∞ is

not optimal (see Theorem 2). This result shows that the optimization of event-dependent service

rates differs from the optimization of state-dependent service rates. Recall that when the service

rate can be dynamically adjusted to the system size, the optimal rates are located on the boundary

of their value domains (that is, a bang-bang control) for optimization problems where a trade-off

between a holding cost and a mean service rate cost has to be determined (Ma and Ao, 1994; Kumar

et al., 2013; Xia, 2014; Xia et al., 2017).

Proposition 2. When the expected service rate, µ, is held constant, then:

• As µ1 tends to infinity, q tends to 1
µE(A) . This means that the queue behaves as in the case

where the inter-arrival time is exponentially distributed.

• As µ2 tends to infinity, q tends to qe. This means that the queue behaves as in the case with

equal service rates (that is, µ1 = µ2 = µe).

Using Proposition 2, we prove in Theorem 2 that E(W ) has a unique minimum in µ1 or µ2 and we

provide a criterion for having this minimum with µ1 > µ2 or µ2 < µ1. This criterion also indicates

whether the agent should accelerate after a service completion or arrival instant to maximize their

utility. Showing that µ1 = µ2 is not optimal proves that the expected waiting time is not only

driven by the mean service rate. Further, this shows that the optimal solution in this study differs

from the one in other queueing models where a server alternates between different service rates.

For instance in the case where a server alternates between µ1 and µ2 from one customer to another

in a cyclic way, if the mean service time is kept constant then the expected wait is minimized for

µ1 = µ2 (Zhou and Gans, 1999).

17



�

���

���

���

���

���

���

��	

��


���

�

� ��� � ��� � ��� � ��� �

�����������

��������

��������������

����������

�� ����������

(a) qe as a function of µ

������

�����

������

�

�����

����

�����

� ��� � ��� � ��� � ��� �

	
�
��������

��������

���
��
����
�����

�����
�����

���
����������


(b) φ(qe, µ) as a function of µ

Figure 2: Effect of µ on qe and φ(qe, µ) (E(A) = 1)

Theorem 2. We define the expression φ(qe, µ) as

φ(qe, µ) = qe − F ∗(µ) + qeµ(1− F ∗(µ))
∂F ∗

∂s
|s=µ(1−qe),

where qe is the unique solution of qe = F ∗(µ(1− qe)) (i.e., the value of q when µ1 = µ2 = µ). The

expected waiting time E(W ) has a unique minimum in µ1 or in µ2 if φ(qe, µ) 6= 0. Further,

• If φ(qe, µ) > 0, then E(W ) is minimized for a couple (µ1, µ2) with µ1 > µ2,

• If φ(qe, µ) < 0, then E(W ) is minimized for a couple (µ1, µ2) with µ1 < µ2.

In Figure 2, we present qe and φ(qe, µ) as functions of µ for different inter-arrival time distri-

butions. We adjust the parameters of each distribution such that the expected inter-arrival time

is equal to 1. We consider the deterministic distribution with f(t) = δt=1 (where δ is the Dirac

function), the Erlang 5 distribution with f(t) = 55t4e−5t

4! , the hyper-exponential distribution with

f(t) =
4
7
e−

4
7 t+e−4t

2 , the exponential distribution with f(t) = e−t, and the invert triangle distribution

with f(t) = 1 − t for 0 ≤ t ≤ 1, f(t) = t − 1 for 1 ≤ t ≤ 2, and f(t) = 0, for t > 2. Figure 2(a) is

presented to show how qe evolves as a function of µ for the considered distributions. As expected,

qe and the expected waiting time are decreasing with µ and increasing with the variability of the

inter-arrival time distribution. Figure 2(b) presents φ(qe, µ) as a function of µ. For the exponential

distribution, we find that φ(qe, µ) = 0 which indicates that we cannot find a couple (µ1, µ2) with a

lower waiting time than in the case µ1 = µ2 = µ. For a distribution with a higher variability like the

hyper-exponential distribution, we observe that φ(qe, µ) > 0 which indicates that an improvement

can be obtained when accelerating the speed of service after an arrival. On the contrary, for other
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distributions with a lower variability than the exponential distribution like the Erlang 5 or the de-

terministic distribution, we have φ(qe, µ) < 0 which suggests that the server should accelerate after

a service completion. However, the expression of φ(qe, µ) in Theorem 2 cannot be reduced to the

effect of the variability of the inter-arrival time. A counterexample is given with the invert triangle

distribution for which φ(qe, µ) can be positive or negative depending on the value of µ. The expres-

sion of φ(qe, µ) also does not reduce to having an increasing or decreasing failure rate property. For

instance, the hyper-exponential distribution with density function f(t) = pλe−λt + (1− p)δt=0 has

the increasing failure rate property but we do not have φ(qe, µ) > 0.

Consequently, the condition in Theorem 2 does not reduce to a simpler condition to estimate

whether the agent should accelerate after a service completion or arrival instant. However in many

cases, the variability of the inter-arrival time may serve as an indicator whether E(W ) can be

minimized with µ1 > µ2 or µ1 < µ2. Specifically, for most distributions with a higher (lower)

variability than the exponential distribution, the agent should select µ1 and µ2 such that µ1 > µ2

(µ1 < µ2).

We now focus of the compensation parameters. The fixed-wage FW compensates the base-effort

but does not provide an incentive to modify the service rates. Therefore, the principal should set

FW = bµ. Next, Theorem 2 determines whether the agent selects µ1 > µ2 or µ2 > µ1. The optimal

piece-rate compensation, pr, is then determined with

pr =
−eE(A)∂µ2∂µ1

∂E(W )
∂µ1

, if µ1 < µ2, and, pr =
−eE(A)∂µ1∂µ2

∂E(W )
∂µ2

, if µ2 < µ1, and (15)

C = bµ−
e∂µ2∂µ1

(E(We)− E(W ))

∂E(W )
∂µ1

, if µ1 < µ2, and,

C = bµ−
e∂µ1∂µ2

(E(We)− E(W ))

∂E(W )
∂µ2

, if µ2 < µ1.

Starting from µ1 = µ2 = µ, the minimum of E(W ) can only be reached if pr = ∞ since we have
∂E(W )
∂µ1

= 0 at the minimum of E(W ). Therefore, the value of µ1 (µ2) which minimizes E(W ) serves

as a lower bound for the optimal value of µ1 (µ2) in the case µ1 < µ2 (µ1 > µ2). We deduce that

pr > 0 since ∂µ2
∂µ1
≤ 0 (Lemma 2) and ∂E(W )

∂µ1
> 0 if µ1 < µ2 or ∂E(W )

∂µ2
> 0 if µ1 > µ2 (Theorem 2).

In Figure 3, we give the piece-rate pr and the agent’s payout C as functions of the relative

improvement obtained for the expected waiting time E(W ). We present the same deterministic
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(b) Agent’s payout C

Figure 3: Numerical illustration (e = b = 1, µ = 2, E(A) = 1)

and hyper-exponential inter-arrival time distributions as those considered in Figure 1. These dis-

tributions are representative of high and low variability distributions. The first observation is that

when µ is held constant, the relative improvement obtained by selecting different service rates is

more limited than with Contract 1. For the deterministic distribution RI can go up to 8.2% and

for the hyper-exponential distribution up to 15%. This shows that the average service rate is the

main driver to reduce the expected waiting time. Therefore, having a fixed average service rate

reduces the range of achievable improvement. It should also be noted that the range of achievable

improvements increases with the variability of the inter-arrival time. This makes a difference with

Contract 1 where the upper bound of RI was identical for all distributions. This observation is

related to the fact that E(W ) is no longer monotonous in µ1 and µ2.

As with Contract 1, improving the service level is costly to the principal, therefore the piece-rate

pr and agent’s payout C are increasing in the obedient effort, RI. However, the behavior of pr and

C shows some differences as compared to the one with Contract 1. In particular, the convexity

property does not hold with Contract 2. With an hyper-exponential distribution, the first part

of the curves is concave, which indicates that a little improvement in the expected waiting time

may lead to a high increase in cost. On the contrary, for the deterministic distribution, the agent’s

payout is almost insensitive to RI when RI is less than 6%. This suggests that it is advisable

to select different service rates after an arrival or a service completion only for inter-arrival time

distributions that have a low variability and when the expected improvement is limited.
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7 Other benefits of selecting event-dependent service rates

In this section, we restrict the study to the exponential inter-arrival time distribution to determine

whether having µ1 6= µ2 could be beneficial for other performance measures than the expected

waiting time. In Section 7.1, we evaluate the expected waiting time at arrival and in Section 7.2 we

include the feature of abandonment.

7.1 Expected waiting time at arrival

When µ1 = µ2 = µ, the expected waiting time at arrival when x customers are already present in

the system is x
µ . This expression changes when µ1 6= µ2. We denote by H1

x, and H2
x, the Laplace

transform in the variable s, of the distribution function of the first passage time from state (x, 1) and

state (x, 2) to a beginning of service, where states (x, 1) and (x, 2) correspond to situations where

x customers are present in the system after an arrival, and after a service completion, respectively.

Applying the first-step analysis to the related discrete-time Markov chain (for instance, see Kulkarni

(2016), p.162), we obtain the following finite set of equations:

H1
x(µ1 + s) = µ1H

2
x−1, for x ≥ 1, (16)

H2
x(λ+ µ2 + s) = µ2H

2
x−1 + λH1

x, for x ≥ 1, with

H2
0 = 1.

This leads to

H1
x =

µ1

µ1 + s

(
µ2(µ1 + s) + λµ1

(µ1 + s)(λ+ µ2 + s)

)x−1

, for x ≥ 1. (17)

The expected waiting time at arrival, when x customers are already present in the system, E(Wx),

is given by E(Wx) = −∂H1
x

∂s |s=0. Using (14) and (17), we deduce that

E(Wx) =
(λ+ µ1)x+ µ2 − µ1

µ1(µ2 + λ)
=

(x− 1)(µ1 − µ) + λx

λµ1
, for x ≥ 1.

This expression is increasing in µ1 if and only if x ≥ µ
µ−λ . This means that having µ1 > µ2

reduces short waiting times while increasing long waiting times. The opposite is true when µ1 < µ2.

This conclusion can be explained intuitively. Recall that in the case of an exponential inter-arrival
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time, the expected waiting time is insensitive to the service rate differentiation. Therefore, if some

customers benefit from µ1 < µ2, it should be detrimental to others. When µ1 < µ2, an arriving

customer will have to wait a long time for the customer in service to be served as the arriving

customer has just generated an arrival event. Once the customer in service is served (if no other

arrival occurred), the following services will be fast. The effect of having fast services is beneficial

for the arriving customer if there are many customers to be served. That is when the queue size is

long. When the queue size is short, the detrimental effect of waiting a long time for the customer

in service to be served is not compensated by following fast services.

In the asymptotic case where µ1 tends to µ−λ (that is, when µ2 tends to infinity), the expected

waiting time at arrival becomes insensitive to the number of customers present in the queue. In

this case, either an arriving customer finds the agent available and there is no wait, or there is at

least one customer present in the system and the expected waiting time is equal to 1
µ−λ , which

corresponds to the expected time spent in an M/M/1 queue. In practice, it may not be possible

to achieve an infinite value for µ2. However, increasing the value of µ2 results in reducing the

sensitivity of the expected waiting time at arrival to the number of customers present. This can be

interesting if the principal cares about fairness among customers.

7.2 Abandonment

We now include the feature of abandonment in the model description. We assume that customers

in the queue have a limited patience that is exponentially distributed with rate β and which does

not impact the agent’s service rate selection. The system balance equations are given by

λπ0,2 = µ1π1,1 + µ2π1,2, (18)

(λ+ µ2 + β(x− 1))πx,2 = (µ1 + βx)πx+1,1 + (µ2 + βx)πx+1,2, for x ≥ 1,

(λ+ µ1)π1,1 = λπ0,2, and,

(λ+ µ1 + β(x− 1))πx,1 = λπx−1,2 + λπx−1,1, for x ≥ 2.
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After solving (18), we obtain

πx,1 = π0,2

(
λ
β

)x
Γ
(
λ+µ2
β + x− 1

)
Γ
(
λ+µ1
β + x

)
Γ
(
µ2
β + x− 1

) Γ
(
λ+µ1
β

)
Γ
(
µ2
β

)
Γ
(
λ+µ2
β

) , for x ≥ 1,

πx,2 = π0,2

(
λ
β

)x+1
Γ
(
λ+µ2
β + x− 1

)
Γ
(
λ+µ1
β + x

)
Γ
(
µ2
β + x

) Γ
(
λ+µ1
β

)
Γ
(
µ2
β

)
Γ
(
λ+µ2
β

) , for x ≥ 1, and,

π0,2 =

 ∞∑
x=0

(
λ
β

)x
Γ
(
λ+µ2
β + x

)
Γ
(
λ+µ1
β + x

)
Γ
(
µ2
β + x

) Γ
(
λ+µ1
β

)
Γ
(
µ2
β

)
Γ
(
λ+µ2
β

)
−1

,

where the gamma function, Γ(z), is defined as Γ(z) =

∫ ∞
t=0

tz−1e−tdt, with z > 0. We deduce that

the probability of abandonment, PA, is given by

PA =
β

λ

∞∑
x=1

(x− 1)

(
λ
β

)x
Γ
(
λ+µ2
β

+x
)

Γ
(
λ+µ1
β

+x
)

Γ
(
µ2
β

+x
)

∞∑
x=0

(
λ
β

)x
Γ
(
λ+µ2
β

+x
)

Γ
(
λ+µ1
β

+x
)

Γ
(
µ2
β

+x
)

.

Using these expressions, we investigate the effect of having µ1 6= µ2 on the fraction of lost customers.

In Table 2, we present different combinations of the parameters λ, µ1, and µ2, to reflect various

situations of workload and gap between µ1 and µ2. For each situation, we compute the probability

to have an empty system, π0,2, and the equivalent service rate µe which would lead to the same

value of π0,2, with µe = µ1 = µ2. In this way, we obtain two systems, one with unequal and one

with equal service rates, which can be compared in terms of fraction of lost customers, PA and P eA,

respectively. In the last column, we compute the difference in terms of lost customers, computed as

D= P eA − PA.

Table 2: Effect of having different service rates on the proportion of abandonment (β = 2)
µ1 µ2 λ π0,2 µe PA P eA D
2 0.5 1 42.81% 1.050 34.20% 39.93% 5.73%
2 0.5 2 17.49% 0.883 55.17% 63.57% 8.40%
2 0.5 4 3.87% 0.781 73.28% 81.24% 7.96%
0.5 2 1 40.89% 0.978 44.87% 42.19% -2.68%
0.5 2 2 23.43% 1.194 58.08% 54.28% -3.80%
0.5 2 4 8.34% 1.392 72.26% 68.10% -4.16%

We observe that having µ1 > µ2 reduces the fraction of lost customers as compared to a system

with equal rates while the opposite effect occurs when µ1 < µ2. As expected, we also observe that
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the effect of having different service rates is stronger in congested systems (that is, with a high

arrival rate). Having µ1 > µ2 results in an agent being fast in periods of queue size growth while

being slow when the queue size reduces. The opposite is true when µ1 < µ2. This means that

the transitions between an empty system and a system with a high congestion are made faster and

more frequently when µ1 < µ2 than when µ2 < µ1. Thus, a system with µ1 < µ2 will regularly

be highly congested, resulting in a high fraction of lost customers as shown in Table 2. Therefore,

accelerating the speed of service after an arrival can be an efficient strategy to reduce the fraction

of lost customers.

8 Conclusion

We investigated a principal-agent problem for a G/M/1 queue where the principal rewards the agent

with a performance-based contract. The agent adjusts the service rate to the last realized event being

an arrival or a service completion with a utility-maximizer objective. We studied this problem for

two contracts. In the first one, the service rate after an arrival is contractible whereas in the second

one the average service rate is contractible. With the first contract, we proved that the agent’s

utility is concave in the obedient effort. This allowed us to express the compensation parameters

which minimize the agent’s payout. Through incentives, the range of achievable improvement in the

expected waiting time is very large with the first contract. However, the convexity of the agent’s

payout in the realized improvement indicates that the cost of a contract with incentives can grow

too high if the desired improvement is high. With the second contract, we proved that the expected

waiting time has a unique minimum and we presented a criterion indicating whether accelerating

after an arrival or after a service completion was optimal. Next, we expressed the payout parameters

and observed that the range of achievable improvement is less with the second contract than with

the first one. Finally, with an exponential inter-arrival time, we determined other positive aspects

of having event-dependent service rates. Accelerating after a service completion is proven to provide

more fairness among arriving customers while accelerating after an arrival reduces the fraction of

lost customers due to abandonment.

This opens up several avenues for future research. It would be interesting to include other

features corresponding to customer behavior such as retrial, reconnect or workload-dependency in

their arrival process. Another extension of the model concerns the possibility for the agent to
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take decisions not just based on the last event but on a larger set of past events. We could also

consider a non-exponential distribution for the service time. Losing the memoryless property of the

exponential distribution would make the model description more difficult, however, especially with

regard to defining the remaining service time when a new event occurs. We could also extend the

analysis to a multi-server setting. The analysis of the G/M/s queue can be made in a similar way

as the one of the G/M/1 queue. However, it may become complex to make assumptions on the

agents’ behavior when a service completion occurs. We may need to consider from which agent the

service completion happened. Moreover, in the utility-maximizer perspective of the agents, we may

also need to make assumptions whether agents collaborate or not for service rate optimization.
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Appendix

A Proof of Lemma 1

Proof. Let us start with (3). Using the transition rates in the Markov chain during a duration dt,

we obtain for x ≥ 1,

pt+dt(x, 2, r) = (1− µ2dt)pt(x, 2, r + dt) + µ2dtpt(x+ 1, 2, r + dt) + µ1dtpt(x+ 1, 1, r + dt).

Taking t −→∞ leads to

p(x, 2, r + dt)− p(x, 2, r)
dt

= µ2p(x, 2, r + dt)− µ2p(x+ 1, 2, r + dt) + µ1p(x+ 1, 1, r + dt),

for x ≥ 1. Next, taking dt −→ 0, we obtain (3). Equation (2) can be deduced from (3) by removing

the term µ2p(x, 2, r) as the agent is not active when the system is empty.

Consider now (5). The transition rates during a duration dt leads to

pt+dt(x, 1, r) = (1− µ1dt)pt(x, 1, r + dt) + f(r)dtpt(x− 1, 1, 0) + f(r)dtpt(x− 1, 2, 0),

for x ≥ 2. Dividing this expression by dt, letting t tend to infinity and next dt tend to zero, leads to

(5). Equation (4) can be deduced from (5) by removing the term f(r)p(x− 1, 1, 0) since the system

cannot be empty after an arrival.

B Proof of Theorem 1

Proof. We now integrate both sides of (2)-(5) for r from 0 to ∞. For the left hand side of the

equations, we have
∫∞
r=0 p(x, i, r)

′ dr = lim
r−→∞

p(x, i, r)− p(x, i, 0) = −p(x, i, 0), for stability reasons.

For the right hand side of the equations, we denote by πx,i the stationary probability to have x

customers in the system with the last event being an arrival (that is, i = 1) or a service completion
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(that is, i = 2). Given that
∫∞
r=0 f(r) dr = 1, we obtain

− p(0, 2, 0) = −µ2π1,2 − µ1π1,1, (19)

− p(x, 2, 0) = µ2πx,2 − µ2πx+1,2 − µ1πx+1,1, for x ≥ 1, (20)

− p(1, 1, 0) = µ1π1,1 − p(0, 2, 0), and (21)

− p(x, 1, 0) = µ1πx,1 − (p(x− 1, 1, 0) + p(x− 1, 2, 0)), for x ≥ 2. (22)

By summing up (20) and (22), we obtain

µ2πx+1,2 + µ1πx+1,1 − (p(x, 2, 0) + p(x, 1, 0)) = µ2πx,2 + µ1πx,1 − (p(x− 1, 2, 0) + p(x− 1, 1, 0)),

for x ≥ 2. This means that the sequence µ2πx+1,2 + µ1πx+1,1 − (p(x, 2, 0) + p(x, 1, 0)) is constant

for x ≥ 1. For stability reason, the limit of the sequence is equal to zero as x tends to infinity. This

proves that

µ2πx+1,2 + µ1πx+1,1 = p(x, 2, 0) + p(x, 1, 0), for x ≥ 1. (23)

Note that this equality is not valid for x = 0 as shown by (19).

From (23), we have p(x − 1, 2, 0) + p(x − 1, 1, 0) = µ2πx,2 + µ1πx,1, for x ≥ 2. Therefore (22)

can be rewritten as

µ2πx,2 = p(x, 1, 0), for x ≥ 2. (24)

Note that this equality is also valid for x = 1. This can be shown by summing up (19) and (21).

We now determine a recursive way to compute the stationary probabilities. We define the LST

of the probabilities p(x, i, r) as P ∗(x, i, s) =

∫ ∞
r=0

e−srp(x, i, r) dr. In what follows, we relate the
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probabilities p(x, i, 0) with the LSTs of p(x, i, r) at s = µ1 and s = µ2:

p(0, 2, 0) = µ2P
∗(1, 2, µ2) + µ2P

∗(0, 2, µ2) + µ1P
∗(1, 1, µ2), (25)

p(x, 2, 0) = µ2P
∗(x+ 1, 2, µ2) + µ1P

∗(x+ 1, 1, µ2), for x ≥ 1, (26)

p(1, 1, 0) = p(0, 2, 0)F ∗(µ1), and (27)

p(x, 1, 0) = (p(x− 1, 2, 0) + p(x− 1, 1, 0))F ∗(µ1), for x ≥ 2. (28)

We explain here how (25)-(28) are computed. We start with (26). After multiplication by e−µ2r,

(3) can be rewritten as

p(x, 2, r)′e−µ2r − µ2p(x, 2, r)e
−µ2r = −µ2p(x+ 1, 2, r)e−µ2r − µ1p(x+ 1, 1, r)e−µ2r, for x ≥ 1.

Hence,

(p(x, 2, r)e−µ2r)′ = −µ2p(x+ 1, 2, r)e−µ2r − µ1p(x+ 1, 1, r)e−µ2r, for x ≥ 1.

Integrating this equation for r from 0 to infinity yields (26). Equation (25) can be deduced from

(26) by adding the corrective term µ2P
∗(0, 2, µ2). With the same approach, (5) can be rewritten as

(p(x, 1, r)e−µ1r)′ = −f(r)e−µ1r(p(x− 1, 1, 0) + p(x− 1, 2, 0)), for x ≥ 2.

Integrating this equation for r from 0 to infinity leads to (28). Equation (27) can be deduced by

removing the term p(x− 1, 1, 0) from (28).

Relations (25)-(28) allow us to relate the stationary probabilities πx,1 and πx,2, for x ≥ 1. Since

p(x − 1, 2, 0) + p(x − 1, 1, 0) = µ2πx,2 + µ1πx,1, for x ≥ 2 (Equation (23)) and p(x, 1, 0) = µ2πx,2,

for x ≥ 1 (Equation (24)), (28) leads to

πx,2 =
µ1

µ2

F ∗(µ1)

1− F ∗(µ1)
πx,1, for x ≥ 2. (29)

This relation is also valid for x = 1. This can be shown by combining (19), (24) for x = 1, and (27).

We now compute the LST of the probabilities p(x, i, r). We multiply (2)-(5) by e−sr and integrate

for r from 0 to infinity. Recall that for a given function h(r) with LST h∗(s), we have
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∫ ∞
r=0

e−srh′(r) dr = sh∗(s)− h(0). This leads to

sP ∗(0, 2, s)− p(0, 2, 0) = −µ2P
∗(1, 2, s)− µ1P

∗(1, 1, s), (30)

sP ∗(x, 2, s)− p(x, 2, 0) = µ2P
∗(x, 2, s)− µ2P

∗(x+ 1, 2, s)− µ1P
∗(x+ 1, 1, s), for x ≥ 1, (31)

sP ∗(1, 1, s)− p(1, 1, 0) = µ1P
∗(1, 1, s)− F ∗(s)p(0, 2, 0), and (32)

sP ∗(x, 1, s)− p(x, 1, 0) = µ1P
∗(x, 1, s)− F ∗(s)(p(x− 1, 2, 0) + p(x− 1, 1, 0)), for x ≥ 2. (33)

Combining (32) and (33) with (23) and (29) leads to

P ∗(x, 1, s) = − µ2πx,2
F ∗(µ1)

F ∗(s)− F ∗(µ1)

s− µ1
, (34)

for x ≥ 1. We now focus on P ∗(x, 2, s) and πx,2. We have for x ≥ 1

p(x, 2, 0) = µ2πx+1,2 + µ1πx+1,1 − p(x, 1, 0) (from (23))

= µ2πx+1,2 + µ2
1− F ∗(µ1)

F ∗(µ1)
πx+1,2 − µ2πx,2 (from (29))

= µ2

(
1

F ∗(µ1)
πx+1,2 − πx,2

)
.

Moreover, for x ≥ 1, we have

p(x, 2, 0) = µ2P
∗(x+ 1, 2, µ2) + µ1P

∗(x+ 1, 1, µ2) (from (26))

= µ2P
∗(x+ 1, 2, µ2)− µ1µ2πx+1,2

F ∗(µ1)

F ∗(µ2)− F ∗(µ1)

µ2 − µ1
(from (34)).

This leads to

πx,2 =
πx+1,2

F ∗(µ1)

(
1 +

µ1(F ∗(µ2)− F ∗(µ1))

µ2 − µ1

)
− P ∗(x+ 1, 2, µ2), for x ≥ 1.

We also have for x ≥ 1,

(s− µ2)P ∗(x, 2, s) = p(x, 2, 0)− µ2P
∗(x+ 1, 2, s)− µ1P

∗(x+ 1, 1, s) (from (31))

= µ2(P ∗(x+ 1, 2, µ2)− P ∗(x+ 1, 2, s)) + µ1(P ∗(x+ 1, 1, µ2)− P ∗(x+ 1, 1, s)) (from (26)).
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Finally, using (34) results in

P ∗(x, 2, s) = − µ1µ2

F ∗(µ1)(s− µ2)

(
F ∗(µ2)− F ∗(µ1)

µ2 − µ1
− F ∗(s)− F ∗(µ1)

s− µ1

)
πx+1,2

− µ2
P ∗(x+ 1, 2, s)− P ∗(x+ 1, 2, µ2)

s− µ2
.

In summary, we may write for x ≥ 1,

πx,2 = (g(0) + 1)πx+1,2 − P ∗(x+ 1, 2, µ2), and (35)

P ∗(x, 2, s) = g(s)πx+1,2 − µ2
P ∗(x+ 1, 2, s)− P ∗(x+ 1, 2, µ2)

s− µ2
, (36)

where g(s) = − µ1µ2
F ∗(µ1)(s−µ2)

(
F ∗(µ2)−F ∗(µ1)

µ2−µ1 − F ∗(s)−F ∗(µ1)
s−µ1

)
.

From (35), we show by induction that

πx,2 = −
∞∑
k=0

(1 + g(0))kP ∗(x+ 1 + k, 2, µ2), (37)

for x ≥ 1. From (36), we obtain by induction that

P ∗(x, 2, s) =
∞∑
k=0

(−µ2)k
g(s)− Tk−1(g(s))

(s− µ2)k
πx+1+k,2, and (38)

P ∗(x, 2, µ2) =
∞∑
k=0

(−µ2)k
g(k)(µ2)

k!
πx+1+k,2, (39)

with Tk(g(s)) =
k∑
j=0

g(j)(µ2) (s−µ2)j

j! . Combining (37) and (39) allows us to show that the steady

state probabilities have a similar relation as for a G/M/1 queue (for instance, see Kleinrock (1975),

page 246). Therefore, the stationary probabilities have a geometric form, where πx,2 can be written

as πx,2 = qx−1π1,2, for x ≥ 1. We thus deduce that

P ∗(x, 2, µ2) = qxπ1,2

∞∑
k=0

(−µ2q)
k g

(k)(µ2)

k!
= qxπ1,2g(µ2(1− q)),

for x ≥ 1. This leads to

πx,2 = −π1,2
qx+1g(µ2(1− q))
1− (1 + g(0))q

,
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for x ≥ 1. Therefore, q, is solution of

q2g(µ2(1− q)) = (1 + g(0))q − 1. (40)

This equation is equivalent to (9).

There remains to show that (9) has a unique solution in (0, 1). To this end, we consider the

quantity K define as

K =
(µ1 − µ2)(1− q)F ∗(µ1) + qµ1F

∗(µ2(1− q))
µ1 − µ2(1− q)

.

We want to prove that the equation K = q has a unique solution in q with q in (0, 1). First, we

note that for q = 0, K = F ∗(µ1) > 0 and for q = 1, K = 1. To show that there exists a unique

solution of K = q in q for q in (0, 1), we show that K is increasing and convex in q. We may write

∂K

∂q
=

∫ ∞
t=0

f(t)e−µ1t
µ1z(e

zt − 1) + qµ1µ2(1− ezt(1− zt))
z2

dt,

where z = µ1 − µ2(1 − q). We have z(ezt − 1) ≥ 0, for z ∈ R. Consider the function in x,

m(x) = 1− ex(1− x)). We have m′(x) = xex. This function is positive for x ≥ 0 and negative for

x ≤ 0. Therefore, m(x) has a minimum at x = 0. Since m(0) = 0, m(x) ≥ 0 for x ∈ R. This proves

that 1− ezt(1− zt) ≥ 0 and ∂K
∂q ≥ 0. Thus, K is increasing in q. We next prove that K is convex

in q. We may express ∂2K
∂q2

as

∂2K

∂q2
= 2µ1µ2

∫ ∞
t=0

f(t)e−µ1t
ezt(zt− 1) + 1

z2
dt+ µ1µ

2
2

∫ ∞
t=0

f(t)e−µ1t
2q
(
ezt
(

(zt)2

2 − zt+ 1
)
− 1
)

z3
dt,

where z = µ1−µ2(1− q). As proven for ∂K
∂q , we have (1 + ezt(zt−1)) ≥ 0. There remains to proven

that n(x) = ex
(

1− x+ x2

2

)
− 1 ≥ 0 if x ≥ 0 and n(x) ≤ 0 if x ≤ 0. We have n′(x) = x2

2 e
x ≥ 0.

Therefore, n(x) is increasing in x. Moreover, n(0) = 0. This proves that n(x) has the sign of x and

∂2K
∂q2
≥ 0. Therefore, K is convex in q.

In summary, we related the stationary probabilities πx,1 and πx,2 with π1,2 for x ≥ 1. There

remains to relate π1,2 with π0,2. For this purpose, we need to determine P ∗(0, 2, s) as given by (30).

In this expression we need to express P ∗(1, 2, s), P ∗(1, 1, s) and p(0, 2, 0). From the above results,
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we get

P ∗(1, 2, s) = qπ1,2
g(s)(s− µ2) + qµ2g(µ2(1− q))

s− µ2(1− q)
,

P ∗(1, 1, s) = − µ2π1,2

F ∗(µ1)

F ∗(s)− F ∗(µ1)

s− µ1
, and

p(0, 2, 0) = µ2π1,2 + µ1π1,1 =
µ2

F ∗(µ1)
π1,2.

This leads to

P ∗(0, 2, s) = µ2π1,2

(
1

sF ∗(µ1)
− q g(s)(s− µ2) + qµ2g(µ2(1− q))

s(s− µ2(1− q))
+

µ1

sF ∗(µ1)

F ∗(s)− F ∗(µ1)

s− µ1

)
(41)

= µ2π1,2
F ∗(s)µ1(s− µ2) + s(µ2 − µ1)F ∗(µ1) + (s− µ1)(s− µ2)

F ∗(µ1)s(s− µ1)(s− µ2(1− q))

Equation (41) allows us to compute P ∗(0, 2, s) as a function of π1,2. We next deduce π0,2 =

lim
s−→0

P ∗(0, 2, s). Using F ∗(s) = 1−E(A)s+ o(s) as s is in the neighborhood of zero, where E(A) is

the expected inter-arrival time, we deduce that

π0,2 = π1,2
µ2(µ1E(A)− 1) + (µ2 − µ1)F ∗(µ1)

F ∗(µ1)µ1(1− q)
.

The normalizing condition leads to the expression of π0,2. This finishes the proof of the theorem.

C Proof of Corollary 1

In what follows, we explain how the performance measures can be derived. The expected service

rate µ can be computed as

µ =

µ1

∞∑
x=1

πx,1 + µ2

∞∑
x=1

π2,1

∞∑
x=1

πx,1 +
∞∑
x=1

πx,2

=
µ1µ2

µ1F ∗(µ1) + µ2(1− F ∗(µ1))
. (42)

Therefore, the probability of am empty system π0,2 can be expressed as

π0,2 = 1− µ1F
∗(µ1) + µ2(1− F ∗(µ1))

µ1µ2E(A)
= 1− 1

µE(A)
. (43)
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Finally, we determine the expected waiting time in the system given through E(W ) = E(A)
∞∑
x=1

(x−

1)(πx,1 + πx,2). This leads to

E(W ) =
q

µ(1− q)
. (44)

D Proof of Proposition 1

Proof. We have

∂2U

∂µ2
2

= − pr

E(A)

∂2E(W )

∂µ2
2

+ (e− b)∂
2µ

∂µ2
2

.

Therefore, to prove that the utility is concave in µ2, we prove that the expected waiting time E(W )

is decreasing and convex in µ2 and that the average service rate µ is increasing and concave in µ2.

We may write

∂E(W )

∂µ2
=
µ ∂q
∂µ2
− q(1− q) ∂µ∂µ2

(µ(1− q))2 , and,

∂2E(W )

∂µ2
2

=
µ2(1− q) ∂

2q
∂µ22

+ 2µ2
(
∂q
∂µ2

)2
+ 2q(1− q)2

(
∂µ
∂µ2

)2
− qµ(1− q)2 ∂2µ

∂µ22
− 2µ(1− q) ∂µ∂µ2

∂q
∂µ2

(µ(1− q))3 .

Moreover using (10), we get

∂µ

∂µ2
=

µ2
1F
∗(µ1)

(µ1F ∗(µ1) + µ2(1− F ∗(µ1)))2
> 0, and,

∂2µ

∂µ2
2

= − 2µ2
1F
∗(µ1)(1− F ∗(µ1))

(µ1F ∗(µ1) + µ2(1− F ∗(µ1)))3 < 0.

Therefore, µ is increasing and concave in µ2. Consequently, a necessary condition for E(W ) to be

decreasing and convex in µ2 is to have q also decreasing and convex in µ2.

From the proof of Theorem 1, to prove that q is decreasing and convex in µ2, we need to show

that the quantity K, defined in the proof of Theorem 1, is decreasing and convex in µ2. We may

write

∂K

∂µ2
= −qµ1(1− q)µ1

z2

∫ ∞
0

f(t)e−µ1t
(
ztezt + 1− ezt(1− q)

)
dt, and,

∂2K

∂µ2
2

=
2qµ1(1− q)2

z3

∫ ∞
0

f(t)e−µ1t
(
−1 +

(
(zt)2

2
− zt+ 1

)
ezt
)
dt,
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with z = µ1 − µ2(1 − q). The functions involved in ∂K
∂µ2

and ∂2K
∂µ22

are those already studied in

the proof of Theorem 1. In particular, we showed that 1 + (zt − 1)ezt ≥ 0 for z ∈ R and that

−1 +
(

(zt)2

2 − zt+ 1
)
ezt ≥ 0 if and only if z ≥ 0. This proves that ∂K

∂µ2
≤ 0 and ∂2K

∂µ22
≥ 0.

Consequently, this also proves that E(W ) is decreasing and convex in µ2.

For µ2 ≤ µ1, the agent’s utility can be expressed as U = FW − eµ1 + pr
E(A)(E(We)− E(W )) +

(e − b)µ. Since E(W ) is decreasing in µ2 and µ is increasing in µ2, U is also increasing in µ2 for

µ2 ≤ µ1. This proves that the optimal value of µ2 should be selected such that µ2 ≥ µ1. The

optimal service rate µ2 is solution of ∂U
∂µ2

= 0, for µ2 ≥ µ1, where

∂U

∂µ2
= − pr

E(A)

∂E(W )

∂µ2
− e+ (e− b) ∂µ

∂µ2
.

Thus, the optimal piece-rate compensation is given by

pr =

(
e− (e− b) ∂µ∂µ2

)
E(A)

−∂E(W )
∂µ2

.

Since ∂E(W )
∂µ2

< 0, we only need to prove that e− (e−b) ∂µ∂µ2 ≥ 0 to prove that pr ≥ 0. The inequality

e− (e− b) ∂µ∂µ2 ≥ 0 is equivalent to µ21F
∗(µ1)

(µ1F ∗(µ1)+µ2(1−F ∗(µ1)))2
≤ e

e−b . Since b ≤ e, we have e
e−b ≥ 1. To

show that the inequality e − (e − b) ∂µ∂µ2 ≥ 0 holds, we now prove that µ21F
∗(µ1)

(µ1F ∗(µ1)+µ2(1−F ∗(µ1)))2
≤ 1.

This last inequality is equivalent to (1− F ∗(µ1))(µ2
2(1− F ∗(µ1)) + 2µ1µ2F

∗(µ1)− µ2
1F
∗(µ1)) ≥ 0.

We have F ∗(µ1) ≤ 1. The function µ2
2(1− F ∗(µ1)) + 2µ1µ2F

∗(µ1)− µ2
1F
∗(µ1) is increasing in µ2.

Since µ2 ≥ µ1, we have µ2
2(1−F ∗(µ1)) + 2µ1µ2F

∗(µ1)−µ2
1F
∗(µ1) ≥ µ2

1(1−F ∗(µ1)) + 2µ2
1F
∗(µ1)−

µ2
1F
∗(µ1) = µ2

1 ≥ 0. This proves that (1−F ∗(µ1))(µ2
2(1−F ∗(µ1)) + 2µ1µ2F

∗(µ1)−µ2
1F
∗(µ1)) ≥ 0.

Consequently, this proves that pr ≥ 0.

Next, we have

∂pr

∂µ2
= E(A)

(e− b)∂
2µ
∂µ22

∂E(W )
∂µ2

+
(
e− (e− b) ∂µ∂µ2

)
∂2E(W )
∂µ22(

∂E(W )
∂µ2

)2 .

To show that pr ≥ 0, we already proved that e − (e − b) ∂µ∂µ2 ≥ 0. Moreover, we also proved that
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∂2µ
∂µ22
≤ 0, ∂E(W )

∂µ2
≤ 0 and ∂2E(W )

∂µ22
≥ 0. Therefore, we have ∂pr

∂µ2
≥ 0. Finally, we may write

∂C

∂µ2
= b

∂µ

∂µ2
+

(e− b)(E(We)− E(W ))∂
2µ
∂µ22

∂E(W )
∂µ2

−
(
e− (e− b) ∂µ∂µ2

)
∂E(W )
∂µ2

∂2E(W )
∂µ22(

−∂E(W )
∂µ2

)2 .

Using the monotonicity results in µ2 for µ and E(W ), we deduce from this expression that ∂C
∂µ2

> 0.

Note that since ∂µ
∂µ2

> 0, we also have ∂r
∂µ ≥ 0 and ∂C

∂µ ≥ 0.

E Proof of Lemma 2

Proof. By computing the derivative of (10) in µ1 assuming that µ is kept constant, we obtain after

simplification

∂µ2

∂µ1
= −µ2

µ2(1− F (µ1)) + µ1(µ2 − µ1)F ′(µ1)

µ2
1F (µ1)

.

In the case µ1 ≥ µ2, we have ∂µ2
∂µ1
≤ 0, since F ′(µ1) < 0 and F (µ1) ≤ 1. We now consider the case

µ2 > µ1. We may write

µ2(1− F (µ1)) + µ1(µ2 − µ1)F ′(µ1) =

∫ ∞
t=0

f(t)
[
µ2 − µ2e

−µ1t − µ1t(µ2 − µ1)e−µ1t
]
dt.

We define the function in t, w(t) = µ2 − µ2e
−µ1t − µ1t(µ2 − µ1)e−µ1t. We obtain w′(t) =

µ2
1e
−µ1t (1 + (µ2 − µ1)t) > 0, since µ2 > µ1. Therefore, w(t) is increasing in t. Finally, w(0) = 0.

This proves that w(t) ≥ 0 and consequently µ2(1−F (µ1)) + µ1(µ2− µ1)F ′(µ1) ≥ 0. Hence, also in

this case we have ∂µ2
∂µ1
≤ 0.

F Proof of Proposition 2

Proof. We employ the notation f(x) ∼
x→a

g(x) to indicate that lim
x→a

f(x)
g(x) = 1. From the theorem of

the initial value, we have lim
µ1→∞

µ1F
∗(µ1) = f(0). Therefore, from (14), we have µ2 ∼

µ1→∞
µf(0)
µ1

, if
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f(0) 6= 0. Therefore, we have

− qµ1F
∗(µ2(1− q)) + (µ2 − µ1)(1− q)F ∗(µ1)− (µ2(1− q)− µ1)q

∼
µ1→∞

qµ1

(
1− F ∗

(
µf(0)(1− q)

µ1

))
− f(0)(1− q) +

µf(0)

µ1
(1− q)(F ∗(µ1)− q)

∼
µ1→∞

qE(A)µf(0)(1− q)− f(0)(1− q).

Therefore, we should have q = 1
µE(A) to solve (40) as µ1 tends to infinity. This proves the first

statement in the case f(0) 6= 0. The same result can be proven in the case f(0) = 0 by considering

a sequence of density functions, fn(t), which tends uniformly to f(t) as n tends to infinity, with

fn(0) 6= 0.

We now consider the second statement.

− qµ1F
∗(µ2(1− q)) + (µ2 − µ1)(1− q)F ∗(µ1)− (µ2(1− q)− µ1)q

∼
µ2→∞

µ2(F ∗(µ1)− q)(1− q) + µ1(1− q)
(

q

1− q
− F ∗(µ1)

)
.

Therefore, the last expression tends to zero if q can be expressed as q = F ∗(µ1)+ a
µ2

+o
(

1
µ2

)
, when

µ2 tends to infinity. When µ2 tends to infinity, we should also have µ1 = µ(1− F ∗(µ1)), from (14).

Combining q = F ∗(µ1) and µ1 = µ(1−F ∗(µ1)) leads to q = F ∗(µ(1− q)) which corresponds to the

equation for q in the case µ1 = µ2. Therefore, q tends to qe when m2 tends to infinity.

G Proof of Theorem 2

Proof. To simplify the notation in the proof, we write F instead of F ∗. As a first step, we prove

that the expected wait has a unique local extremum in µ1 when µ1 and µ2 are related via (14).

From (12), we have

∂E(W )

∂µ1
=

1

µ

∂q
∂µ1

(1− q)2
.
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Therefore, ∂E(W )
∂µ1

= 0 if and only if ∂q
∂µ1

= 0. Next using (9), we deduce that

µ1

q

∂q

∂µ1

(
(µ1 − µ2)F (µ1) + q2µ2 + q2µ1µ2F

′(µ2(1− q))
)

(45)

=
∂µ2

∂µ1
µ1(1− q)

(
q − F (µ1) + qµ1F

′(µ2(1− q))
)

+ (1− q)
(
(µ1 − µ2)µ1F

′(µ1)− µ2q + µ2(1− q)F (µ1)
)
.

Therefore, if ∂q
∂µ1

= 0, we should have

ψ(q) =
∂µ2

∂µ1
µ1

(
q − F (µ1) + qµ1F

′(µ2(1− q))
)

+
(
(µ1 − µ2)µ1F

′(µ1)− µ2q + µ2(1− q)F (µ1)
)

= 0,

(46)

since q 6= 1. Therefore, under Contract 2, a critical point is determined by (µ1, µ2, q) such that

Equations (14), (9), and (46) are satisfied by (µ1, µ2, q). Since these three equations are independent,

there is at most one critical point which could either be a maximum or a minimum of E(W ).

Using (14), we rewrite the equation leading to q as a function of µ1 and µ as follows:

− qµ1F

(
µµ1F (µ1)(1− q)
µ1 − µ(1− F (µ1))

)
+

(
µµ1F (µ1)

µ1 − µ(1− F (µ1))
− µ1

)
(1− q)F (µ1)

−
(
µµ1F (µ1)(1− q)
µ1 − µ(1− F (µ1))

− µ1

)
q = 0.

Multiplying this equation by µ1−µ(1−F (µ1))
µ1

leads to

−q(µ1 − µ(1− F (µ1))F

(
µµ1F (µ1)(1− q)
µ1 − µ(1− F (µ1))

)
+ (µ− µ1)(1− q)F (µ1)− q(µ− µ1 − qµF (µ1)) = 0.

We consider a couple (µ1, µ2) which is close to the point (µ1 = µ, µ2 = µ). We then write µ1 = µ+ε,

where ε = o(µ). Therefore, we have

−q(ε+ µF (µ+ ε))F

(
µ(1− q)(µ+ ε)F (µ+ ε)

ε+ µF (µ+ ε)

)
− ε(1− q)F (µ+ ε) + q(qµF (µ+ ε) + ε) = 0.

(47)
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We have

F

(
µ(1− q)(µ+ ε)F (µ+ ε)

ε+ µF (µ+ ε)

)
= F

(
(1− q)µµF (µ) + ε(F (µ) + µF ′(µ)) + o(ε)

µF (µ) + ε(1 + µF ′(µ)) + o(ε)

)
= F

(
(1− q)µ

(
1 +

ε

µ

(
1 +

F ′(µ)

F (µ)

)
+ o(ε)

)(
1− ε

µ

(
1

F (µ)
+
F ′(µ)

F (µ)

)
+ o(ε)

))
= F

(
(1− q)µ

(
1 +

ε

µ

(
1− 1

F (µ)

)
+ o(ε)

))
= F ((1− q)µ) + ε(1− q)

(
1− 1

F (µ)

)
F ′(µ(1− q)) + o(ε).

Moreover, (ε+ µF (µ+ ε)) = µF (µ) + ε(1 + µF ′(µ)) + o(ε). Hence,

− q(ε+ µF (µ+ ε))F

(
µ(1− q)(µ+ ε)F (µ+ ε)

ε+ µF (µ+ ε)

)
= −qµF (µ)F ((1− q)µ) + ε

[
−qF ((1− q)µ)(1 + µF ′(µ)) + q(1− F (µ))(1− q)µF ′(µ(1− q))

]
+ o(ε).

Next,

−ε(1− q)F (µ+ ε) + q(qµF (µ+ ε) + ε) = q2µF (µ) + ε(q + q2µF ′(µ)− (1− q)F (µ)) + o(ε).

Therefore, (47) can be rewritten as

− qµF (µ)F ((1− q)µ) + q2µF (µ)

+ ε
[
−qF ((1− q)µ)(1 + µF ′(µ)) + q(1− F (µ))(1− q)µF ′(µ(1− q)) + q + q2µF ′(µ)− (1− q)F (µ)

]
+ o(ε) = 0.

We now write q = qe + z, where qe = F (µ(1 − qe)) (that is, the solution when µ1 = µ2 = µ), and

z = o(qe). Using qe = F (µ(1− qe)), we obtain

qezµF (µ)(1 + µF ′((1− qe)µ)) ∼
ε,z→0

−ε(1− qe)(qe − F (µ) + qeµ(1− F (µ))F ′(µ(1− qe))). (48)

The equivalence (48) relates z and ε. On the left hand side of this expression the terms qe and µF (µ)

are positive. Recall that qe is solution of q = F (µ(1 − q)), with 0 < q < 1. Consider the function

in q, H(q) = F (µ(1 − q)). We have H ′(q) = −µF ′(µ(1− q)) = µ

∫ ∞
t=0

te−µ(1−q)tf(t)dt > 0, and

H ′′(q) = µ2F ′′(µ(1− q)) = µ2

∫ ∞
t=0

t2e−µ(1−q)tf(t)dt > 0. Therefore, H(q) is increasing and convex

in q. Moreover, we have H(1) = F (0) = 1, so q = 1 is a solution of H(q) = q, and H(0) = F (µ) > 0.
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If H ′(qe) > 1, then for q > qe we have H ′(q) > H ′(qe) > 1, since H(q) is convex in q. Therefore, we

should have H(1) = 1 > H ′(qe)(1− qe) + qe > 1 which leads to a contradiction. Therefore, we have

H ′(qe) ≤ 1. Hence, −µF ′(µ(1 − qe)) ≤ 1 and 1 − µF ′(µ(1 − qe)) ≥ 0. This means that the terms

proportional with z are all positive.

With unequal rates, we want to find a solution with q < qe (as the expected waiting time is

increasing in q). Therefore, we want to have z < 0. Therefore, if φ(qe, µ) > 0, then we need to have

ε > 0 to have z < 0 and if φ(qe, µ) < 0, then we need to have ε < 0 to have z < 0.

Consequently if φ(qe, µ) < 0, then there exists a couple (µ1, µ2) with µ1 < µ2 such that the

expected wait is lower than in the case with equal service rates. From Proposition 2, the G/M event/1

queue behaves as in the case with equal service rates when µ2 tends to infinity. Therefore, there

exists a minimum of E(W ) in µ2, for µ < µ2 < ∞. Since E(W ) has at most one critical point in

µ2, this critical point is the global minimum of E(W ) in µ2.

In the case φ(qe, µ) > 0, there exists a couple (µ1, µ2) with µ1 > µ2 such that the expected

wait is lower than in the case with equal service rates. From Proposition 2, the G/M event/1 queue

behaves as an M/M/1 queue with service rate µ when µ1 tends to infinity. If the variability of the

inter-arrival time is lower than the one of an exponential distribution, then there exists a minimum

of E(W ) in µ1, for µ < µ1 < ∞. Since E(W ) has at most one critical point in µ1, this critical

point is the global minimum of E(W ) in µ1. However, the result holds even if the variability of

the inter-arrival time is higher than the one of an exponential distribution. To show this result, we

prove that µ1 = ∞ cannot be a minimum for q and consequently for E(W ). To prove this result

we consider Equation (45). Using the initial value theorem as we did in the proof of Proposition

2 and assuming that f(0) 6= 0, the left hand side of (45) is equivalent to µ1f(0)(µE(A) − 1) ∂q
∂µ1

when µ1 tends to infinity. Assuming that tf ′(t) tends to 0 as t tends to 0, using again the initial

value theorem, we show that (1 − q) ((µ1 − µ2)µ1F
′(µ1)− µ2q + µ2(1− q)F (µ1)) is equivalent to

−f(0)
(

1 + 1
µ1E(A)

)(
1− 1

µE(A)

)
. Recall that we have

∂µ2

∂µ1
= −µ2

µ2(1− F (µ1)) + µ1(µ2 − µ1)F ′(µ1)

µ2
1F (µ1)

.

This expression is equivalent to −f(0)µ
µ21

(
1 + µ

µ1

)
as µ1 tends to infinity. Finally,

µ1(1 − q) (q − F (µ1) + qµ1F
′(µ2(1− q))) is equivalent to −

(
µ21
µ + µ1

µE(A)

)(
1− 1

µE(A)

)
. We then
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deduce that

∂q

∂µ1
∼

µ1→∞

1

µ2
1E(A)

> 0.

This proves that q cannot be decreasing in µ1 when µ1 is in the neighborhood of infinity. Therefore,

the condition φ(qe, µ) > 0 is sufficient to prove that E(W ) is minimized for a couple (µ1, µ2) with

µ1 > µ2.
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